# Air Conditioning Sizing In the New Northwest

# Air Conditioning Sizing In the New Northwest

**Record Highs** 

2<sup>nd</sup> Deadliest Natural Disaster In Oregon's History





#### **Rules of Thumb**

- One Ton Per 400 square feet
- One cfm per sq. ft. of house
- Tonnage = half the number of cylinders in the customer's biggest car/truck
- What's in the shop today
- ½ ton bigger than their neighbor
- Other



#### Heat Loss/Heat Gain Analysis

#### The ACCA Process Work

- Manual "J" calculates heat loss/heat gain
- Manual "S" guides in the selection process
- Manual "D" guides in the duct design process



Various Sizing Manuals

### Bad Installation Trumps Good Sizing



#### What the Customer Wants

• To be warm in winter

• To be cool in summer





#### Manual J Cooling Load Inputs

**Critical Inputs include windows and Internal gain** 



#### The Official Summer Climate Map of America



#### **Definitions: Design Conditions**

- Design Temperature is not the coldest day or hottest day of the year
- Winter Design Conditions: It only gets colder than this 1%-2.5% of the time
- Boise:
  - Average coldest temp is -2° F (the mean extreme)
  - Winter Design Condition is 9° F
  - Summer: I don't care about what the design temp is, I want it cool now
- Portland:
  - Winter 23° F
  - Summer 86° F
  - What about mean extreme?



# Which Design Temp Do You Want?

| Weather City Selection                                                                                                                                                                                                                                                            | on                                                                                                                                                                                                                                    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Country                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                       |     | State/Province                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| Tuvalu<br>Ukraine<br>United Arab Emirates<br>United Kingdom<br>United States Minor Outlying<br>Uruguay                                                                                                                                                                            | Islands                                                                                                                                                                                                                               |     | New York<br>North Carolina<br>North Dakota<br>Ohio<br>Oklahoma<br>Oregon<br>Pennsulvania                                                                                                                                                                                                                                                                                                                                                                                                    | < |
| - City                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |     | Cooling DB / WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Eugene<br>Eugene<br>Grants Pass<br>Hillsboro<br>Klamath Falls Intl AP<br>Meacham<br>Meacham<br>Medford<br>Medford<br>Newport State Beach<br>North Bend<br>North Bend<br>Pendleton<br>Pendleton<br>Pendleton<br>Portland<br>Portland<br>Portland<br>Portland<br>Redmond<br>Redmond | ASHRAE<br>ASHRAE2005<br>Man J/N<br>ASHRAE<br>ASHRAE<br>ASHRAE2005<br>ASHRAE2005<br>ASHRAE2005<br>ASHRAE2005<br>ASHRAE2005<br>ASHRAE2005<br>ASHRAE2005<br>ASHRAE<br>ASHRAE2005<br>ASHRAE2005<br>ASHRAE2005<br>ASHRAE2005<br>ASHRAE2005 |     | Annual       Monthly         © Mean extreme (99 °F / 73 °F)       © 0.4% (90 °F / 67 °F)       © 0.4%         © 1% (90 °F / 66 °F)       © 1%         © 1% (86 °F / 66 °F)       © 1%         © 2% (83 °F / 64 °F)       © 2%         Heating DB       © 99% (27 °F)         © 99.6% (22 °F)       © Mean extreme (18 °F)         Bin Data       Source: ASHRAE Copyright © 2001 by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Used by permission. |   |
| 0                                                                                                                                                                                                                                                                                 | K Can                                                                                                                                                                                                                                 | cel | Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |

# The Difference Between The Mean Extreme And The Design temperature:

- In traditional HOT climates the difference might be less than 5 degrees F
- In traditional mild climates the difference can easily be 15 F to 25F
- But please don't use 115 as your design temp

## From Manual J

- 5-3 Design Conditions
- "The outdoor or indoor design conditions may be dictated by code or regulation. If there is no enforceable law or regulation, the contractor and the homeowner should mutually agree on the design conditions."

What Contributes to the Cooling Load? Conduction through walls and attics

Solar gain and conduction through windows and skylights

Floors exposed to outside temperatures

People

Ducts outside conditioned space (conduction and leakage)

Infiltration/exfiltration

Appliances

Ventilation

# Making Reasonable Estimates of Insulation Levels and Windows is Critical

|      |       | 0                                                | REGON CODE | PRACTICES             |             |          |
|------|-------|--------------------------------------------------|------------|-----------------------|-------------|----------|
| Year | Attic | Floor                                            | Walls      | Basement Walls        | Windows     | Slab     |
| 1973 | R-19  | R-9 or Foil on floor<br>or R4.5 on crawl<br>wall | R-11       | R 0                   | Na          |          |
| 1979 | R-30  | R19                                              | R-11       | R11 to 12 below grade | Dual Pane   |          |
| 1986 | R30   | R19                                              | R19        | R11 to 12 below grade | Dual Pane   |          |
| 1990 | R38   | R19                                              | R19        | R11 to 12 below grade | Dual Pane   |          |
| 1992 | R38   | R25                                              | R21        | R21                   | .40 U value | R15 Edge |
|      |       |                                                  |            |                       |             |          |
| 2008 | R38   | R30                                              | R21        | R21                   | .35 U Value | R15 Edge |

## Washington State Code History

| Year                | Attic | Floors | Walls | Windows                                           |
|---------------------|-------|--------|-------|---------------------------------------------------|
| King County<br>1978 | 30    | 11     | 11    | Dual Pane                                         |
| 1980                | 30    | 11     | 11    | Dual Pane                                         |
| 1986                | 38    | 19     | 19    | Dual Pane                                         |
| 1989                | 38    | 19     | 19    | Class 40 window for<br>Electric, Class 65 for gas |
| 2001                | 38    | 19     | 19    | Class 40 windows for all                          |



Removing the outlet cover and sliding a non-conductive probe such a plastic crochet hook or a chop stick between the sheetrock and the outlet base can help to determine if the walls are insulated Walls that have been insulated post construction will have patched holes on the interior walls or exterior walls. Look for 2-1/2 inch holes that have been filled and painted over

# Wall Insulation

- Wall Insulation is the hardest to determine the R value
- As a rule, homes built since 1970 have wall insulation. All homes built by code have wall insulation since 1990.
- 2 x 4 walls with insulation have an R value of R-11
- 2 x 6 walls have an R value of R-19



# Basements: The Critical Details

- First Question: Are you planning on conditioning the basement?
- How many feet below and above grade
- Is it insulated
- Does the sun actually "see" the glass



## Manufactured Home R Value Guide

| Manufactured Home R Value Guide |      |         |    |      |  |  |  |  |
|---------------------------------|------|---------|----|------|--|--|--|--|
| Timeframe                       | Wall | Windows |    |      |  |  |  |  |
| Pre 1975                        | 7    | 7       | 7  | 1.1  |  |  |  |  |
| 76- 94 HUD Code                 | 11   | 11      | 11 | 0.75 |  |  |  |  |
| 90 -94 Super Good Cents         | 38   | 33      | 21 | 0.38 |  |  |  |  |
| Present HUD Code                | 22   | 22      | 11 | 0.48 |  |  |  |  |
| 95 to Present NEEM              | 38   | 33      | 21 | 0.38 |  |  |  |  |
| 2000 to Present Energy Star     | 40   | 33      | 21 | 0.36 |  |  |  |  |



## Determining How Leaky or Tight A House is:

# ACH Rates: Always an Estimate

| Year Built                 | Winter ACH | Summer ACH |
|----------------------------|------------|------------|
| Non 4 X 8 Sheet Goods      | 1          | .5         |
| 4 X 8 Sheet Goods pre 1970 | .70        | .25        |
| 1970 to 1990               | .5         | .25        |
| 1990 to 2010               | .35        | .15        |
| 2010 to Present            | .25        | .15        |

## What's on that Window Sticker



## Windows, the details

- Solar Heat Gain Coefficient (SHGC)
  - The percentage of solar radiation hitting the outside of the window assembly that is transmitted to inside the house
  - In the Northwest Most SHGC ratings are very similar to the U value



By Jncstuart - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64174111

#### A Word About Duct Multipliers



- Typically between 5%-20%.
- 10%: Tight & insulated outside conditioned space
- 20%: Leaky or disconnected ducts outside conditioned space
- 30%: Leaky old ducts under rodent barrier in manufactured home

# Fix the ducts if they are at 20% or worse

# Duct Multipliers

|              | Duct Location             | Duct P | Duct Soaling | Hosting Multiplior | Cooling      |
|--------------|---------------------------|--------|--------------|--------------------|--------------|
|              |                           |        | Duct Sealing | neating Multiplier | ividitiplier |
| House Low R  | 100% attic                | R4     | average      | 0.25               | 0.4          |
| House High R | 100% attic                | R4     | average      | 0.31               | 0.51         |
| House High R | 100% attic                | R8     | average      | 0.21               | 0.33         |
| House Low R  | 100% attic                | R4     | semi tight   | 0.28               | 0.43         |
| House High R | 100% attic                | R4     | semi tight   | 0.28               | 0.43         |
| House High R | 100% attic                | R8     | semi tight   | 0.17               | 0.28         |
| House High R | 100% Attic                | R2     | semi Leaky   | 0.59               | 1.07         |
| House High R | 50% attic 50% Inside      | R2     | semi Leaky   | 0.29               | 0.54         |
| House High R | 50% attic 50% Inside      | R4     | semi tight   | 0.14               | 0.22         |
| House High R | 50% attic 50% Inside      | R8     | semi Tight   | 0.09               | 0.14         |
| House High R | 50% attic 50% Inside      | R8     | average      | 0.11               | 0.17         |
| House High R | 15% attic, 85% crawlspace | R8     | average      | 0.12               | 0.1          |
| House High R | 15% attic, 85% crawlspace | R4     | semi leaky   | 0.29               | 0.22         |
| House High R | 15% attic, 85% crawlspace | R8     | semi tight   | 0.09               | 0.08         |

# Duct Multipliers and Variable Speed Equipment



Efficiency optimization of a variable-capacity/variable-blower-speed residential heat-pump system with ductwork



Sreenidhi Krishnamoorthy<sup>a,\*</sup>, Mark Modera<sup>b</sup>, Curtis Harrington<sup>b</sup>

<sup>a</sup> University of California, Davis, Western Cooling Efficiency Center, 215 Sage Street, Suite 100, Davis, CA 95616, USA
<sup>b</sup> Western Cooling Efficiency Center, UC Davis, 215 Sage Street, Suite 100, Davis, CA 95616, USA

# The Lab Set Up



Fig. 3. Layout of ducts and grilles in the outdoor environmental chamber at the Western Cooling Efficiency Center, University of California - Davis.

#### Duct Gain Increases as Duct Velocity Decreases

S. Krishnamoorthy et al. / Energy and Buildings 150 (2017) 294-306



106F **.** 84F 95F \_\_\_\_ 115F Duct-zone temperatures: 1.0 0.9 **Delivery Effectiveness** 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.10.0 20 40 60 80 100 Capacity and Airflow (%)

Fig. 5. Delivery effectiveness vs. Capacity/Airflow percentages for different duct-zone temperatures at 24 °C DB/17 °C WB indoor condition. Vertical error bars represent uncertainties.

## Windows: Sweat the Details

| BTUS/HR/Sq.FT | . of Window 3                           | 5 Delta T 40 L              | Degree Latitude.                        |                       |                                         | BTUS/HR. To                 | tal                                     |
|---------------|-----------------------------------------|-----------------------------|-----------------------------------------|-----------------------|-----------------------------------------|-----------------------------|-----------------------------------------|
| Orientation   | Single Pane U<br>value =.98<br>SHGC= 74 | Double Pane<br>U value =.42 | Double Pane U<br>value=.42<br>SHGC = 35 | SQ . FT. of<br>Window | Single Pane U<br>value =.98<br>SHGC= 74 | Double Pane<br>U value =.42 | Double Pane U<br>value=.42<br>SHGC = 35 |
| Nextle        | 100-17                                  | 51100-101                   | 5110055                                 | 40                    | 1 0 0                                   | 1.040                       | 3110055                                 |
| North         | 49                                      | 26                          | 19                                      | 40                    | 1,960                                   | 1,040                       | /60                                     |
| NE or NW      | 80                                      | 53                          | 32                                      | 40                    | 3,200                                   | 2,120                       | 1,280                                   |
| East or West  | 104                                     | 72                          | 42                                      | 80                    | 8,320                                   | 5,760                       | 3,360                                   |
| SE or SW      | 93                                      | 63                          | 37                                      | 40                    | 3,720                                   | 2,520                       | 1,480                                   |
| South         | 65                                      | 40                          | 25                                      | 40                    | 2,600                                   | 1,600                       | 1,000                                   |
| Totals        |                                         |                             |                                         | 240                   | 19,800                                  | 13,040                      | 7,880                                   |
|               |                                         | 1                           | ton difference                          | .5 ton diff           | erence 11,920                           | 5,160                       |                                         |

The goal of all HVAC equipment sizing is to find the best match between the house and the equipment.

# What Is Meant by Equipment Sizing?

Optimal size is the best match, or balance, between the rate of heat loss or heat gain of the house and the capacity of the HVAC equipment.

# **Total Cooling Load: Sensible and Latent**

#### Sensible cooling load:

 The part of the cooling load that involves lowering the dry bulb temperature.

#### Latent cooling load:

 The part of the cooling load that involves removing water vapor from the air (dehumidification).

Cooling process will reduce both temperature and moisture



### **Psychrometric Definitions**

#### **Dry Bulb Temperature:**

 The dry bulb temperature is measured by an ordinary room thermometer or thermostat.



# Sling Psychrometer



# Sizing for Air Conditioning

- REMEMBER WE LIVE IN A DRY SUMMER CLIMATE!
  - Find the outside design temp.
  - Determine your cfm.
  - Pick the lowest Entering Wet Bulb (EWB) temp
  - Locate the sensible capacity

| Evapo | rator          |                              |                              |                              | CON                          | DENSER                      | ENTERING                    | AIR TEM                      | PERATUR                      | ES "F                    |                              |                              |                          |
|-------|----------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|--------------------------|------------------------------|------------------------------|--------------------------|
| 4     | 1              | 85                           |                              |                              | 1                            | ( 95 )                      |                             |                              | 105                          |                          | 115                          |                              | 100                      |
| CEN N | EW             | Cap                          | Capacity<br>WRtubt           |                              | Cap<br>MB                    | acity<br>tubț               | Total<br>System             | Cap<br>MB                    | acity<br>tuht                | Total<br>System          | Cap<br>MB                    | acity<br>tuht                | Total<br>System          |
| VI II | 8              | Total                        | Sens‡                        | KW**                         | Total                        | Senst:                      | KNPH .                      | Total                        | Sens‡                        | KW10                     | Total                        | Sens:                        | KN+                      |
| _     | -              |                              |                              | 5448024 0                    | utdoor Se                    | ction With                  | 517EN030                    | Indoor S                     | ection                       |                          | towns?                       |                              |                          |
| 800   | 12<br>67<br>69 | 26.3<br>23.9<br>21.7         | 13.1<br>15.8<br>21.3         | 2.41<br>2.35<br>2.32         | 24.8<br>22.5<br>20.5         | 12.6<br>16.2<br>19.6        | 250<br>254<br>248           | 23.3<br>21.1<br>19.3         | 120<br>157<br>189            | 278<br>271<br>265        | 21.8<br>19.8<br>18.2         | 115<br>15.1<br>18.1          | 295<br>287<br>281        |
| -e    | 57             | Du                           | 212                          | 231                          | 20.2                         | 20,2                        | 24                          | 19.2                         | 192                          | 254                      | 182                          | 182                          | 281                      |
| 900   | 12 62 62 55    | 26.5<br>24.2<br>22.2<br>21.9 | 13.6<br>17.7<br>21.4<br>21.9 | 2.46<br>2.41<br>2.37<br>2.37 | 20.1<br>22.8<br>20.9<br>20.8 | 17.1<br>20.6<br>20.8        | 265<br>259<br>254<br>254    | 23.5<br>21.4<br>19.8<br>19.8 | 125<br>166<br>198<br>198     | 283<br>277<br>271<br>271 | 22.0<br>20.0<br>18.7<br>18.7 | 12.0<br>16.0<br>18.7<br>18.7 | 301<br>233<br>288<br>268 |
| 1000  | 72 67 62 57    | 26.9<br>24.5<br>22.5<br>22.5 | 14.1<br>18.5<br>22.3<br>22.5 | 251<br>246<br>243<br>242     | 25.3<br>23.0<br>21.4<br>21.4 | 135<br>17.9<br>21.4<br>21.4 | 270<br>2.64<br>2.60<br>2.60 | 218<br>21.6<br>20.2<br>20.2  | 13.0<br>17.3<br>20.2<br>20.2 | 288<br>282<br>277<br>277 | 22.2<br>20.1<br>19.1<br>19.1 | 124<br>163<br>191<br>191     | 207<br>299<br>295<br>295 |

# What Manual S Says About Cooling

- Don't oversize by more than 115%, or 125% if it's a heat pump.
- Why:
  - Because they are very concerned about dehumidification. (But the West is not humid)
  - Because older air conditioners became very inefficient when cycling. (Newer equipment doesn't have this problem.)





# Nerd Alert

- $\bullet$  C<sub>d</sub> or C sub D
- The C<sub>d</sub> is the coefficient of degradation. It is used to describe how the efficiency of air conditioners or heat pumps is degraded by cycling.
- New equipment has very low C<sub>d</sub>s
- This means that in dry summer climates, the effect of oversizing by a ton is in the neighborhood of a 4% penalty.

## Guidelines for Variable Speed Equipment

- If ducts are in the attic:
  - Seal. Insulate
  - Oversizing will lead to warmer delivered air temps
  - Oversizing will lead to decreased efficiency
  - DON'T RUN FAN 24/7 . Ducts in the attic are a heat exchanger



# Manual S: Cooling

- Understand that latent and sensible cooling loads are separate.
  - The unit selected must meet each to obtain and maintain comfort in the cooling mode.
  - Infiltration accounts for most of the latent load
    - Humid climates: leaky homes have higher latent loads than tight homes.
    - Dry climates: leaky homes have lower latent loads than tight homes.

# Sizing for Cooling



MOST PARTS OF THE WEST REQUIRE ONLY SENSIBLE COOLING (VERY LOW HUMIDITY LEVELS).

"AIR CONDITIONING" ORIGINALLY MEANT (IN LARGE PART) DEHUMIDIFICATION. OVERSIZED EQUIPMENT WILL NOT DEHUMIDIFY WELL. IN DRY PLACES, OVERSIZING DOESN'T MATTER SINCE (ALMOST) ALL COOLING IS SENSIBLE. INSULATION OF THE HOUSE IS IMPORTANT TO COOLING LOAD BUT WINDOWS AND DUCTS ARE EVEN MORE IMPORTANT. liitit

EQUIPMENT OUTPUT TABLES MUST BE LOOKED AT CAREFULLY.

# The Sweat The Details Stuff

- 1. Insulation Levels, (none, some, fair amount a lot!)
- 2. House Tightness : usually between .35 ACH an .8
- 3. Windows: Solar Heat Gain Coefficient is critical! Orientation
- 4. Duct Multiplier: Between 5% and 40%. If it's worst than that. Fix it
- 5. House Size
- 6. Capacity of heat pump at desired balanced point
- 7. Pick the right weather station!

# **Questions?**



# Thank you!

