

All Things HVAC
Fall 2022 Trade Ally Forums

State of the Market

- HVAC industry constantly navigating change, often this change is out of our control
- No shortage of examples in today's market
 - Inflation Reduction Act
 - M1 Testing Procedures
 - Supply chain issues
 - Unprecedented price increases
- Estimated savings/performance ratings not aligned with actual field results

Today's Discussion

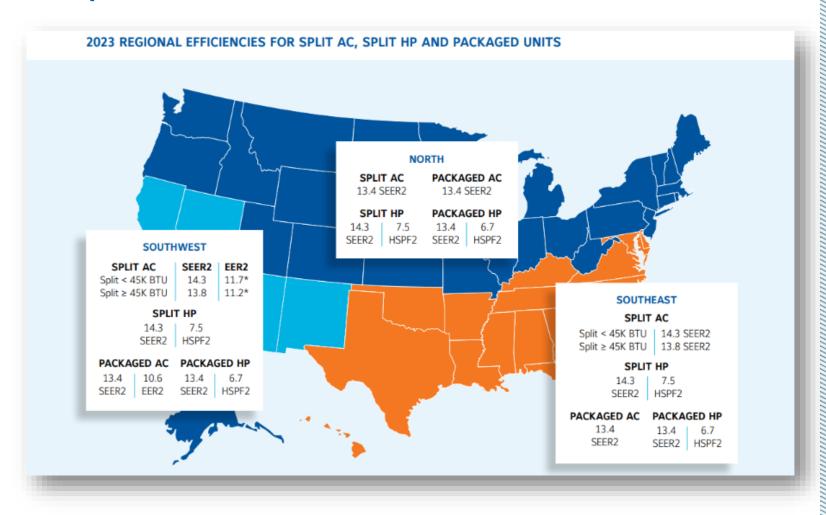
- 1) Regulatory Updates: Overview of revised testing procedures and changes to the Federal Standard
- 2) Matchmaker: Choosing the right HVAC system for your customer
- 3) Getting the most out of your HVAC diagnostic tools

Regulatory Updates: Overview of revised testing procedures and changes to the Federal Standard

Upcoming changes

- SEER, EER, and HSPF ratings will become SEER2, EER2, and HSPF2 in 2023
 - Due to changes in the test procedure
 - Applies to single phase equipment
- Minimum energy efficiency is increasing by approximately 7%
 - Effective date Jan 1, 2023
 - Different rules for North, Southeast and Southwest regions
 - DOE Guidance Document on Regional Standards
- R-410A/R-407C refrigerants will begin phase out in 2025 or 2026, depending on the product

Key Changes in Test Procedures


- DOE's Appendix M change to Appendix M1
 - Changes represent improvements that more accurately reflect field conditions
- Key changes:
 - Minimum air handler static pressure
 - Fan power for coil-only units
 - Heating load calculation
 - Heating mode test
 - Variable speed factor for SEER2
 - Off-mode power test
 - Note: Off-mode power test does not affect SEER2/HSPF2 and is regulated separately

Regional Standard Map*

Minimum AC & HP ratings vary by region

Oregon:

- Heat Pump (Split)
 - 14.3 SEER2
 - 7.5 HSPF2
- AC (Split)
 - 13.4 SEER2

*https://www.achrnews.com/articles/146585-prepare-now-for-2023-energy-efficiency-standards

HARDI Resource*

2023 Energy Efficiency Standards for Residential Cooling

RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS				
Region:	NATIONWIDE	SOUTH	SOUT	HWEST
Compliance Deadline:	Date of manufacture	Date of installation	Date of installation	
Inventory Management:	Any noncompliant equipment manufactured prior to January 1, 2023 can be sold and installed	All noncompliant equipment must be sold for installation prior to January 1, 2023 or shipped to the North for installation		
Split-System Air Conditioners with a Certified Cooling Capacity <45,000 Btu/h	13.4 SEER2	14.3 SEER2	14.3 SEER2	11.7 EER2** (**9.8 EER2 if ≥ 15.2 SEER2)
Split-System Air Conditioners with a Certified Cooling Capacity ≥45,000 Btu/h	13.4 SEER2	13.8 SEER2	13.8 SEER2	11.2 EER2** (**9.8 EER2 if ≥ 15.2 SEER2)

*2023 Energy Efficiency Standards for Residential Cooling (hubspotusercontent40.net)

Energy Star

- Current specification, v5.0 will end 12/31/21
- Specification v6.0 optional starting in 2022, mandatory in 2023
 - Higher efficiencies
 - Cold climate products
 - Controls verification procedure
 - Communicating products
- AHRI is an EPA—recognized certification body (CB)
 - Find ENERGY STAR certified products on AHRI's Directory

Energy Star Criteria

B. Energy Efficiency Requirements:

a. Certification Metric Criteria

Table 1: Energy-Efficiency Criteria for Certified Residential Central Air Conditioners

Product Type	SEER2	EER2	
CAC Split Systems	≥ 15.2	≥ 12.0	
CAC Single Package Equipment ¹	≥ 15.2	≥ 11.5	

Including gas/electric package central AC units.

Table 2: Energy-Efficiency Criteria for Certified Residential Heat Pumps

Product Type	SEER2	EER2	HSPF2	
HP Split Systems	≥ 15.2	≥ 11.7	≥ 7.8	
HP Single Package Equipment ¹	≥ 15.2	≥ 10.6	≥ 7.2	

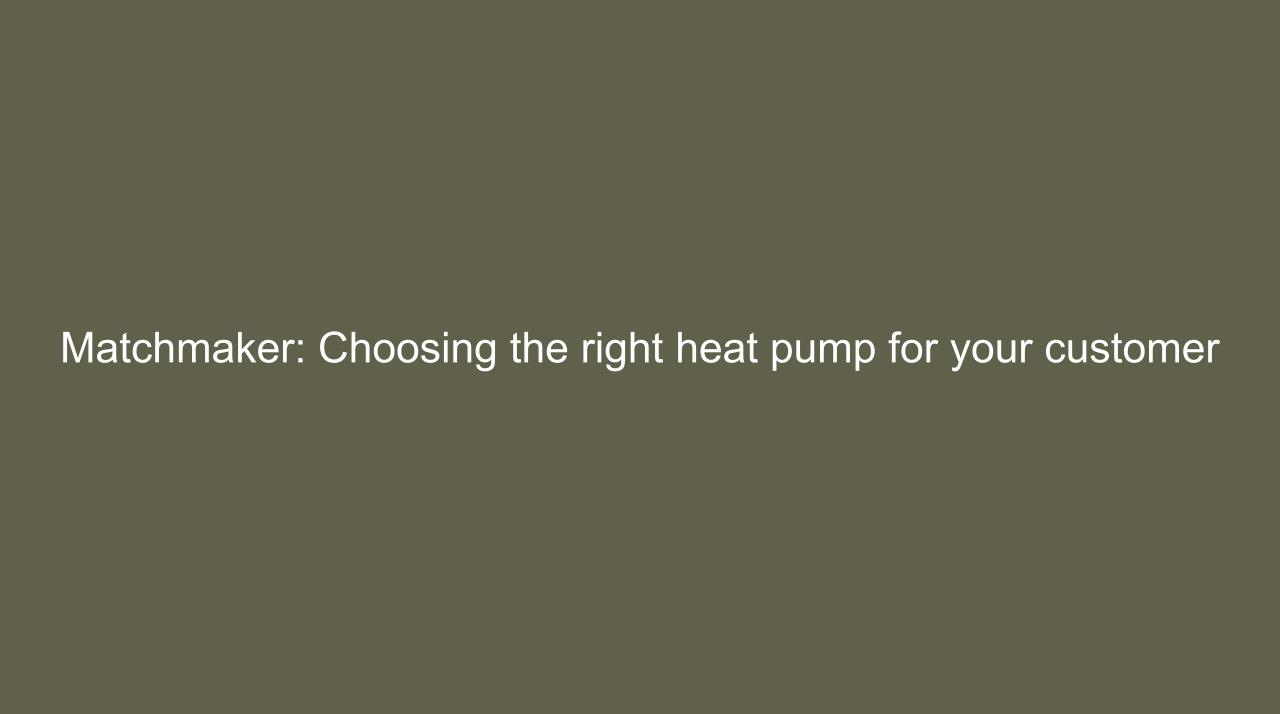

Including gas/electric package heat pumps, which are not eligible for the Cold Climate designation.

Table 3: Energy-Efficiency Criteria for Certified Residential Cold Climate Heat Pumps

Product Type	SEER2	HSPF2
HP Split Systems (Non-Ducted)	≥ 15.2	≥ 8.5
HP Split Systems (Ducted)	≥ 15.2	≥ 8.1
HP Single Package Equipment ¹	≥ 15.2	≥ 8.1

Excludes gas/electric package heat pumps, which are not eligible for the Cold Climate designation.

For purposes of ENERGY STAR certification, a Heat Pump model may be designated as Cold Climate as per the associated requirements in Table 3.

Today's Heat Pump Landscape

HP measure facing savings and cost effectiveness challenges

HSPF not strong indicator of actual energy consumption

Variable speed technology does not play well with poor ductwork

Today's Heat Pump Landscape

Good News!

These are challenges we can minimize through thoughtful design and installation best practices

HP measure facing savings and cost effectiveness challenges

HSPF not strong indicator of actual energy consumption

Variable speed technology does not play well with poor ductwork

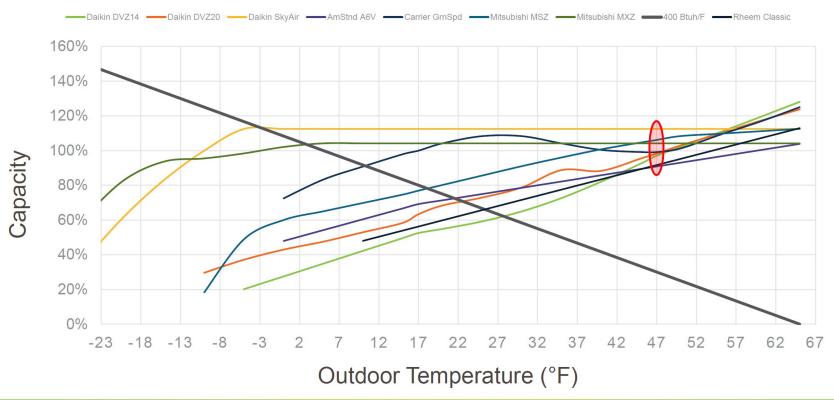
Special thanks to NEEA

Majority of the following content was made available by Christopher Dymond and Suzi Asmus (NEEA), with collaborative support and input from:

- Isaac Smith MN Center for Energy and Environment
- Ben Schoenbauer MN Center for Energy and Environment
- Ben Larson Energy Research
- Matt Christie TRC

HSPF vs. high-COP at mild temperatures

Energy efficient heat pumps are currently identified by high HSPF ratings (heating mode)

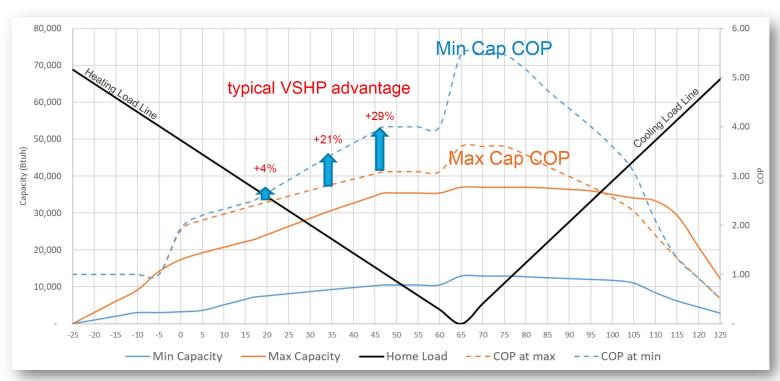

What if there was a better indicator of energy savings for our climate?

Ratings do not reflect real world performance

Not all Heat Pumps are the Same

Not all 2 Ton Heat Pumps are the same

#1 Low Load Efficient


#1 – Low Load Efficient

When sized right, a variable speed heat pump spends most of its time running at part load.

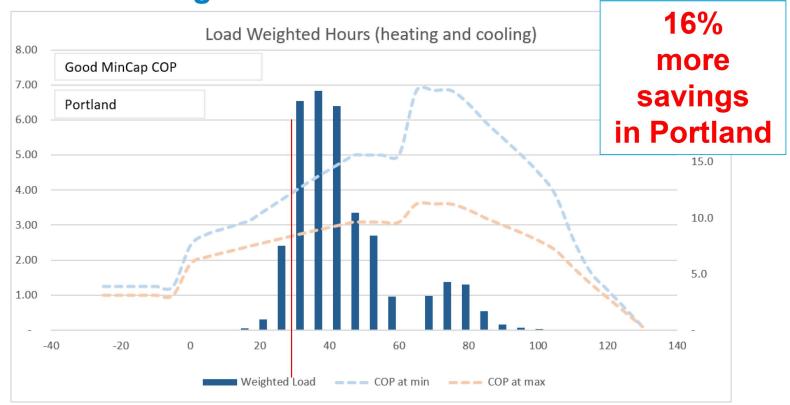
Good VSHPs are 20-30% more efficient at part load than at full load

Minimum Capacity COP

MN CEE Analysis

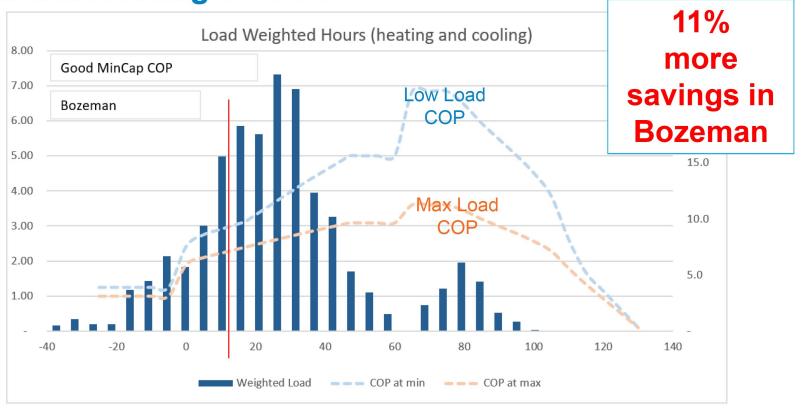
 Low-Load efficiency is important to seasonal performance

in all climates

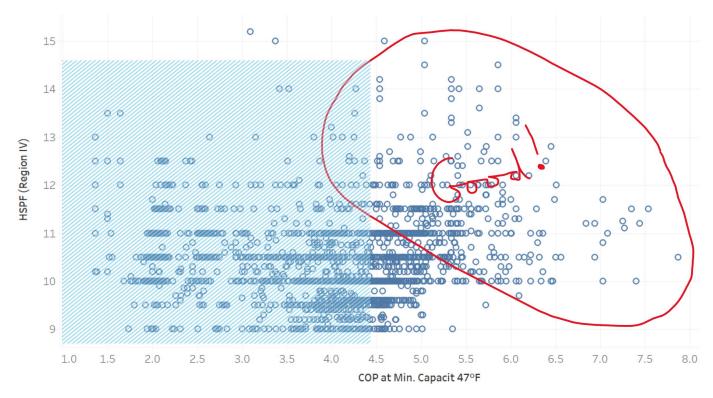

 Minimum Capacity COP@47°F appears to be the best indicator

25% improved MinCap COP@47°F (Modeled Results)

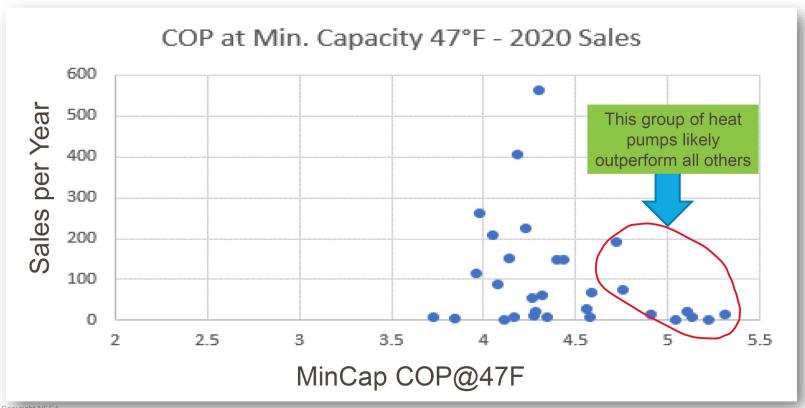
City	Additional Savings
Portland	16%
New York City	17%
Bozeman	11%
Minneapolis	8%


Annual Heating vs COP

Portland, OR


Annual Heating vs COP

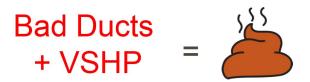
Bozeman, MT

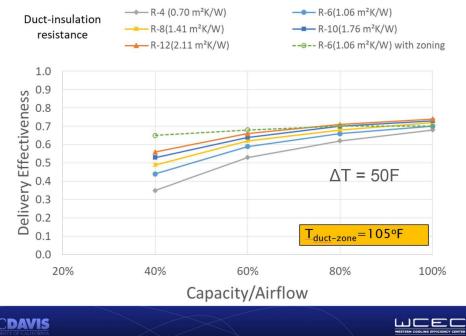

MinCap COP47 vs HSPF

(NEEP heat pump database)

BPA – Market Data Analysis

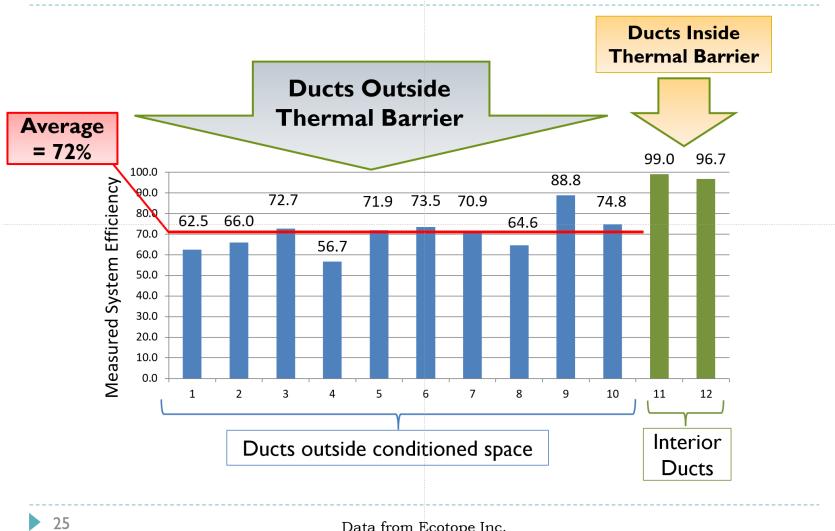
Low Load Efficiency


Definition	Savings		Identification		
MinCap COP@47 > 5.0	Energy Savings7-17% Improvement	NEEP Heat Pump Database			
	Peak Savings negligible				
	Carbon Savings	City		Savings	
	 Local grid dependent 	Portland	d	16%	
		New Yo	ork City	17%	
		Bozema	an	11%	
		Minnea	polis	8%	


Red indicates work is needed

Low Fan Speed Increases Losses

 Variable Speed HPs may be a bad idea if ducts are inadequate



Outside vs. Inside Energy Savings

Getting the most out of your HVAC diagnostic tools

Installation Best Practices

Improved product selection

Ensuring adequate ductwork

Improved installation practices

Commonly used HVAC diagnostic tools

Basic roles of standard HVAC diagnostic tools:

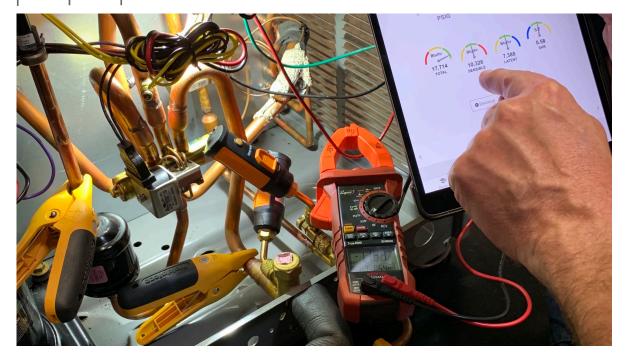
Check for leaks

Confirm electrical measurements are in spec

Verify proper amount of refrigerant

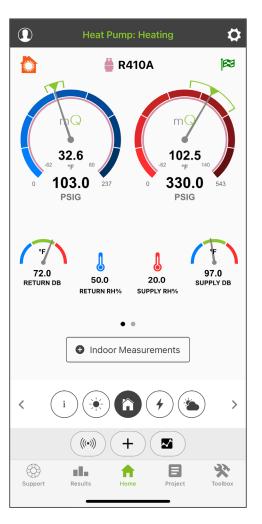
Bluetooth-enabled tools

Bluetooth functionality increasingly common across mainstream HVAC diagnostic product lines



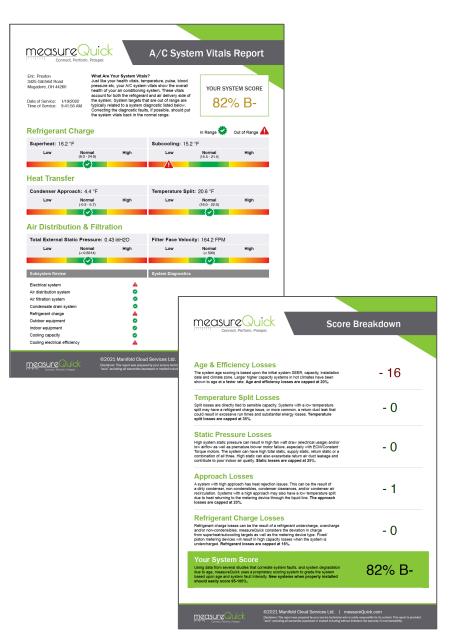
Realizing full potential of Bluetoothenabled tools

measureQuick benefits


- Central hub receiving and interpreting real-time data collected by Bluetooth-enabled diagnostic tools
 - Supports mix-match of brands (ex. Fieldpiece/Testo/etc.)
- Diagnoses issues with system performance during installation and tune-up
- Provides customer-facing reports, supporting sales process
- Supports technician training and troubleshooting, allowing veteran installers to review system diagnostics from remote location in real-time
- Benchmarking systems, increasing value for maintaining service agreements with installer

measureQuick Benefits

- mQ application supports diagnostic reporting for heat pumps, gas furnaces and central AC
- Can be accessed via smart phone, tablet and laptop



Heat pumps

measureQuick Reporting System

- Measurements and calculations
- Pass/Fails for subsystems
- Corrective actions
- Photo documentation
- Geo location

measureQuick QC & Support System

- Remote viewing of:
 - Data from the field
 - Diagnostics and cleared faults
 - All performance calculations
- Ability to prepopulate projects
- Generate past reports

measureQuick Workforce Development

mQ features supporting workforce development:

- Real-time remote view of system diagnostics, allowing for feedback from experienced staff while in other locations
- Prescriptive workflow application presents step-bystep installation/tune-up process
- Instant feedback mQ application flags testing results outside of normal range and provides list of possible causes

Future of connected tools within Residential program

Energy Trust of Oregon recognizes the value of enhanced data collection and real-time diagnostics.

While measureQuick is the highlighted tool in today's presentation, Energy Trust is monitoring the market for similar tools coming into the market, including sensors built into new HVAC equipment

Thank you

Mark Jerome

Sr. Technical Energy Manager

